资源类型

期刊论文 332

会议视频 3

年份

2024 1

2023 13

2022 22

2021 39

2020 19

2019 17

2018 15

2017 17

2016 20

2015 14

2014 18

2013 13

2012 16

2011 16

2010 12

2009 22

2008 16

2007 25

2006 6

2005 1

展开 ︾

关键词

协同效应 2

引种工程 2

惰性粒子 2

气体分布板 2

3-DR-IUD 1

3D支架平台 1

Anderson 模型 1

CO2 加氢 1

China TIMES模型 1

DX桩 1

Fe、Co、Ru 碳化物 1

K 助剂 1

Mn 助剂 1

Pd局域环境 1

SWAT-WF模块 1

TC4钛合金 1

n 型碳纳米管 1

三维有限元分析 1

上游关键敏感区 1

展开 ︾

检索范围:

排序: 展示方式:

The diazotrophic community in oat rhizosphere: effects of legume intercropping and crop growth stage

Yadong YANG, Xiaomin FENG, Yuegao HU, Zhaohai ZENG

《农业科学与工程前沿(英文)》 2019年 第6卷 第2期   页码 162-171 doi: 10.15302/J-FASE-2018212

摘要:

In this study, the abundance, diversity and structure of the diazotrophic community in oat rhizosphere soil in three cropping systems and at two oat growth stages were investigated using real-time PCR and Illumina MiSeq sequencing. The gene abundance in oat-soybean intercropping (OSO) and oat-mungbean intercropping (OMO) was significantly greater than that in sole oat (O), but the gene abundance significantly decreased at the later stage in all the treatments. Alpha diversity indices in OSO and OMO were higher at the heading stage, but lower at the maturity stage than that in O. and were the dominant genera identified in all samples, with an average proportion of 35.8% and 12.4%, respectively. The proportion of dominant genera showed significant differences and varied with cropping system and growth stage. Principal component analysis showed that growth stage had a stronger effect than intercropping on the diazotrophic community structure. However, Mantel test and redundancy analysis showed there was no environmental factor significantly correlated to the diazotrophic community structure. Our results demonstrate that intercropping had a weaker effect than growth stage on the abundance, diversity and structure of the diazotrophic community in oat rhizosphere soil.

关键词: community composition     Illumina MiSeq sequencing     nifH gene     oat-legume intercropping     rhizosphere soil    

Microbial community and functional genes in the rhizosphere of alfalfa in crude oil-contaminated soil

Yi ZHONG, Jian WANG, Yizhi SONG, Yuting LIANG, Guanghe LI

《环境科学与工程前沿(英文)》 2012年 第6卷 第6期   页码 797-805 doi: 10.1007/s11783-012-0405-z

摘要: A rhizobox system constructed with crude oil-contaminated soil was vegetated with alfalfa ( L.) to evaluate the rhizosphere effects on the soil microbial population and functional structure, and to explore the potential mechanisms by which plants enhance the removal of crude oil in soil. During the 80-day experiment, 31.6% of oil was removed from the adjacent rhizosphere (AR); this value was 27% and 53% higher than the percentage of oil removed from the far rhizosphere (FR) and from the non-rhizosphere (NR), respectively. The populations of heterotrophic bacteria and hydrocarbon-degrading bacteria were higher in the AR and FR than in the NR. However, the removal rate of crude oil was positively correlated with the proportion of hydrocarbon-degrading bacteria in the rhizosphere. In total, 796, 731, and 379 functional genes were detected by microarray in the AR, FR, and NR, respectively. Higher proportions of functional genes related to carbon degradation and organic remediation, were found in rhizosphere soil compared with NR soil, suggesting that the rhizosphere selectively increased the abundance of these specific functional genes. The increase in water-holding capacity and decrease in pH as well as salinity of the soil all followed the order of AR>FR>NR. Canonical component analysis showed that salinity was the most important environmental factor influencing the microbial functional structure in the rhizosphere and that salinity was negatively correlated with the abundance of carbon and organic degradation genes.

关键词: crude oil-contaminated soil     phytoremediation     rhizosphere effects     rhizobox     functional genes    

Effect of rhizosphere on soil microbial community and pyrene biodegradation

SU Yuhong, YANG Xueyun, CHIOU Cary

《环境科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 468-474 doi: 10.1007/s11783-008-0078-9

摘要: To access the influence of a vegetation on soil microorganisms toward organic pollutant biogegration, this study examined the rhizospheric effects of four plant species (sudan grass, white clover, alfalfa, and fescue) on the soil microbial community and pyrene (PYR) biodegradation. The results indicated that the spiked PYR levels in soils decreased substantially compared to the control soil without planting. With equal planted densities, the efficiencies of PYR degradation in rhizosphere with sudan grass, white clover, alfalfa and fescue were 34.0%, 28.4%, 27.7%, and 9.9%, respectively. However, on the basis of equal root biomass the efficiencies were in order of white clover >> alfalfa > sudan > fescue. The increased PYR biodegradation was attributed to the enhanced bacterial population and activity induced by plant roots in the rhizosphere. Soil microbial species and biomasses were elucidated in terms of microbial phospholipid ester-linked fatty acid (PLFA) biomarkers. The principal component analysis (PCA) revealed significant changes in PLFA pattern in planted and non-planted soils spiked with PYR. Total PLFAs in planted soils were all higher than those in non-planted soils. PLFA assemblages indicated that bacteria were the primary PYR degrading microorganisms, and that Gram-positive bacteria exhibited higher tolerance to PYR than Gram-negative bacteria did.

Sulfur mediated heavy metal biogeochemical cycles in coastal wetlands: From sediments, rhizosphere to

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1523-x

摘要:

• In sediments, the transformation of sulfides may lead to the release of heavy metals.

关键词: Coastal wetland     Heavy metal     Sulfur     Biogeochemical cycle    

Changes in bulk soil affect the disease-suppressive rhizosphere microbiome against Fusarium wilt disease

Lin FU, Wu XIONG, Francisco DINI-ANDREOTE, Beibei WANG, Chengyuan TAO, Yunze RUAN, Zongzhuan SHEN, Rong LI, Qirong SHEN

《农业科学与工程前沿(英文)》 2020年 第7卷 第3期   页码 307-316 doi: 10.15302/J-FASE-2020328

摘要:

Harnessing disease-suppressive microbiomes constitutes a promising strategy for optimizing plant growth. However, relatively little information is available about the relationship between bulk and rhizosphere soil microbiomes. Here, the assembly of banana bulk soil and rhizosphere microbiomes was investigated in a monoculture system consisting of bio-organic (BIO) and organic management practices. Applying BIO practice in newly reclaimed fields resulted in a high-efficiency biocontrol rate, thus providing a promising strategy for pre-control of Fusarium wilt disease. The soil microbiota was further characterized by MiSeq sequencing and quantitative PCR. The results indicate that disease suppression was mediated by the structure of a suppressive rhizosphere microbiome with respect to distinct community composition, diversity and abundance. Overall microbiome suppressiveness was primarily related to a particular set of enriched bacterial taxa affiliated with s, , , , and . Finally, structural equation modeling was used to show that the changes in bulk soil bacterial community determined its induced rhizosphere bacterial community, which serves as an important and direct factor in restraining the pathogen. Collectively, this study provides an integrative approach to disentangle the biological basis of disease-suppressive microbiomes in the context of agricultural practice and soil management.

关键词: agricultural practice     bulk soil     disease suppression     rhizosphere ecology    

Improving the efficiency and effectiveness of global phosphorus use: focus on root and rhizosphere levels

null

《农业科学与工程前沿(英文)》 2019年 第6卷 第4期   页码 357-365 doi: 10.15302/J-FASE-2019275

摘要:

Phosphorus (P) is essential for life and for efficient crop production, but global P use with limited recycling is inefficient in several sectors, including agronomy. Unfortunately, plant physiologists, agronomists, farmers and end users employ different measures for P use efficiency (PUE), which often masks their values at different scales. The term P use effectiveness, which also considers energetic and sustainability measures in addition to P balances, is also a valuable concept. Major physiological and genetic factors for plant P uptake and utilization have been identified, but there has been limited success in genetically improving PUE of modern crop cultivars. In maize, studies on root architectural and morphological traits appear promising. Rhizosphere processes assist in mobilizing and capturing sparingly soluble phosphate from rock phosphate. Combinations of phosphate-solubilizing microorganisms with ammonium-based nitrogen fertilizer, as well as strategies of fertilizer placement near the roots of target crops, can moderately enhance PUE. The desired concentration of P in the products differs, depending on the final use of the crop products as feed, food or for energy conversion, which should be considered during crop production.

关键词: acquisition efficiency     plant growth promoting rhizobacteria     phosphate     use efficiency     utilization efficiency    

Coupling of the chemical niche and microbiome in the rhizosphere: implications from watermelon grafting

Yang SONG, Chen ZHU, Waseem RAZA, Dongsheng WANG, Qiwei HUANG, Shiwei GUO, Ning LING, Qirong SHEN

《农业科学与工程前沿(英文)》 2019年 第6卷 第2期   页码 206-206 doi: 10.15302/J-FASE-2018234

Rhizosphere immunity: targeting the underground for sustainable plant health management

Zhong WEI, Ville-Petri FRIMAN, Thomas POMMIER, Stefan GEISEN, Alexandre JOUSSET, Qirong SHEN

《农业科学与工程前沿(英文)》 2020年 第7卷 第3期   页码 317-328 doi: 10.15302/J-FASE-2020346

摘要:

Managing plant health is a great challenge for modern food production and is further complicated by the lack of common ground between the many disciplines involved in disease control. Here we present the concept of rhizosphere immunity, in which plant health is considered as an ecosystem level property emerging from networks of interactions between plants, microbiota and the surrounding soil matrix. These interactions can potentially extend the innate plant immune system to a point where the rhizosphere immunity can fulfil all four core functions of a full immune system: pathogen prevention, recognition, response and homeostasis. We suggest that considering plant health from a meta-organism perspective will help in developing multidisciplinary pathogen management strategies that focus on steering the whole plant-microbe-soil networks instead of individual components. This might be achieved by bringing together the latest discoveries in phytopathology, microbiome research, soil science and agronomy to pave the way toward more sustainable and productive agriculture.

关键词: rhizosphere     soil microbiome     plant immunity     microbial ecology     plant health     soilborne pathogens    

OPPORTUNITIES AND APPROACHES FOR MANIPULATING SOIL-PLANT MICROBIOMES FOR EFFECTIVE CROP NITROGEN USE IN AGROECOSYSTEMS

《农业科学与工程前沿(英文)》 2022年 第9卷 第3期   页码 333-343 doi: 10.15302/J-FASE-2022450

摘要:

● Matching nitrification inhibitors with soil properties and nitrifiers is vital to achieve a higher NUE.

关键词: nitrogen     microbiome     NUE     rhizosphere     phyllosphere     soil food web    

Rhizosphere effect of different aquatic plants on phosphorus depletion

WANG Zhenyu, WEN Shengfang, GAO Dongmei, LI Fengmin, XING Baoshan

《环境科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 274-279 doi: 10.1007/s11783-008-0048-2

摘要: A series of pot experiments with , , and were conducted to assess the phosphorus depletion effect in the rhizosphere. The ratio of root to shoot, root morphology, phosphorus uptake efficiency and phosphorus utilization efficiency were analyzed. An obvious variation in phosphorus concentrations between the rhizosphere soil and non-rhizosphere soil was observed. The water-soluble P contents in the rhizosphere soil of , , and were reduced by 81%, 42%, 18% and 16%, respectively, compared with that in the non-rhizosphere soil. had the highest phosphorus uptake efficiency (1.32 mg/m), while achieved the effective phosphorus depletion by the strong rooting system and the high phosphorus uptake efficiency (0.52 mg/m). not only used phosphorus to produce biomass economically, but also adjusted carbon allocation to the roots to explore the soil for more available phosphorus. and were more effective in depleting phosphorus in the rhizosphere than and .

Temporal variation of PM-associated health effects in Shijiazhuang, Hebei

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1376-0

摘要:

•Annual mean PM2.5 in Shijiazhuang were 87, 95, and 82 µg/m3 in 2015–2017.

关键词: PM2.5     Health effects     Integrated exposure-response model     Shijiazhuang    

Synergistic effects of sodium hypochlorite disinfection and iron-oxidizing bacteria on early corrosion

《环境科学与工程前沿(英文)》 2022年 第16卷 第6期 doi: 10.1007/s11783-021-1506-3

摘要:

• The early corrosion process in the cast iron pipes was investigated.

关键词: Cast iron pipe corrosion     Drinking water distribution systems     Chlorine disinfection     Iron-oxidizing bacteria     Coupling effects    

Investigation of effects of Cocamide Diethanolamide chemical on physical and rheological properties of

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 99-116 doi: 10.1007/s11709-021-0799-4

摘要: In this study, bituminous binder was modified with Cocamide Diethanolamide chemical, a non-ionic surfactant, and the physical and rheological properties of modified binders were investigated. In addition, Cocamide Diethanolamide has been used for the first time to modify bituminous binder, and this situation makes the study distinctive. Bituminous binder was modified more than once with the chemical by changing modification parameters and using certain additive ratios (1%, 3%, and 5%). The effects of different modification parameters and chemical additive on modified samples were investigated with conventional bitumen tests (softening point, penetration, ductility) and Superpave tests (rotational viscometer, rolling thin film oven test, pressure aging vessel, dynamic shear rheometer, bending beam rheometer). In addition, the structural characteristics of the reference binder and modified samples were examined by X-ray diffraction, Fourier Transform Infrared Spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The examinations showed that Cocamide Diethanolamide softens bituminous binder and lowers processing temperatures. In addition, compared to reference binder, rutting resistances of modified bituminous binders decreased with the increase of additive ratio. However, modification with Cocamide Diethanolamide increased the resistance to fatigue cracks and thermal cracks.

关键词: Cocamide Diethanolamide     bitumen modification     rheology     Superpave tests    

Protective effects of lignin fractions obtained from grape seeds against bisphenol AF neurotoxicity viaantioxidative effects mediated by the Nrf2 pathway

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 976-989 doi: 10.1007/s11705-022-2237-0

摘要: Lignin exhibits antioxidative and various other biological properties. However, its neuroprotection capability has rarely been studied. In this study, three types of lignin with different structures were prepared from grape seeds by using different isolation techniques. The antioxidative and neuroprotective effects of the lignin fractions were evaluated with the apoptosis model of murine neuroectodermal (NE-4C) neural stem cells stimulated with bisphenol AF. The results demonstrated that the half maximal inhibitory concentration for scavenging 2,2-diphenyl-1-picrylhydrazyl with water-soluble lignin (L-W, 58.19 μg·mL–1) was lower than those of lignin in the autohydrolyzed residue of grape seeds (84.27 μg·mL–1) and original lignin in grape seeds (99.44 μg·mL–1). BPAF exposure had negative effects on the reactive oxygen species, malondialdehyde content, and superoxide dismutase and glutathione peroxidase activities in NE-4C cells, which can be reversed by using the prepared lignin to reduce oxidative stress. An immunofluorescence assay demonstrated that grape seed lignin induced protective effects on BPAF-injured NE-4C cells via the nuclear factor erythroid 2-related Factor 2 pathway. In addition, correlational analyses showed that lignin (L-W) with lower molecular weights and noncondensed phenolic hydroxyl group content and higher contents of COOH groups effectively prevented cell apoptosis, scavenged reactive oxygen species, and ensured protection from nerve injury. This study demonstrated that grape seed lignin can be used as a neuroprotective agent and serves as a demonstration of active lignin production from grape seed waste.

关键词: grape seed lignin     structure     antioxidant     NE-4C cells     neuroprotection    

Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems:

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1495-2

摘要:

• Quorum sensing enhancement and inhibition methods are summarized.

关键词: Quorum sensing     Biological waste treatment     Biofilm formation    

标题 作者 时间 类型 操作

The diazotrophic community in oat rhizosphere: effects of legume intercropping and crop growth stage

Yadong YANG, Xiaomin FENG, Yuegao HU, Zhaohai ZENG

期刊论文

Microbial community and functional genes in the rhizosphere of alfalfa in crude oil-contaminated soil

Yi ZHONG, Jian WANG, Yizhi SONG, Yuting LIANG, Guanghe LI

期刊论文

Effect of rhizosphere on soil microbial community and pyrene biodegradation

SU Yuhong, YANG Xueyun, CHIOU Cary

期刊论文

Sulfur mediated heavy metal biogeochemical cycles in coastal wetlands: From sediments, rhizosphere to

期刊论文

Changes in bulk soil affect the disease-suppressive rhizosphere microbiome against Fusarium wilt disease

Lin FU, Wu XIONG, Francisco DINI-ANDREOTE, Beibei WANG, Chengyuan TAO, Yunze RUAN, Zongzhuan SHEN, Rong LI, Qirong SHEN

期刊论文

Improving the efficiency and effectiveness of global phosphorus use: focus on root and rhizosphere levels

null

期刊论文

Coupling of the chemical niche and microbiome in the rhizosphere: implications from watermelon grafting

Yang SONG, Chen ZHU, Waseem RAZA, Dongsheng WANG, Qiwei HUANG, Shiwei GUO, Ning LING, Qirong SHEN

期刊论文

Rhizosphere immunity: targeting the underground for sustainable plant health management

Zhong WEI, Ville-Petri FRIMAN, Thomas POMMIER, Stefan GEISEN, Alexandre JOUSSET, Qirong SHEN

期刊论文

OPPORTUNITIES AND APPROACHES FOR MANIPULATING SOIL-PLANT MICROBIOMES FOR EFFECTIVE CROP NITROGEN USE IN AGROECOSYSTEMS

期刊论文

Rhizosphere effect of different aquatic plants on phosphorus depletion

WANG Zhenyu, WEN Shengfang, GAO Dongmei, LI Fengmin, XING Baoshan

期刊论文

Temporal variation of PM-associated health effects in Shijiazhuang, Hebei

期刊论文

Synergistic effects of sodium hypochlorite disinfection and iron-oxidizing bacteria on early corrosion

期刊论文

Investigation of effects of Cocamide Diethanolamide chemical on physical and rheological properties of

期刊论文

Protective effects of lignin fractions obtained from grape seeds against bisphenol AF neurotoxicity viaantioxidative effects mediated by the Nrf2 pathway

期刊论文

Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems:

期刊论文